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Multipopulation is an effective optimization strategy which is often used in evolutionary algorithms (EAs) to improve optimization
performance. However, it is of remarkable difficulty to determine the number of subpopulations during the evolution process
for a given problem, which may significantly affect optimization ability of EAs. This paper proposes a simple multipopulation
management strategy to dynamically adjust the subpopulation number in different evolution phases throughout the evolution. The
proposed method makes use of individual distances in the same subpopulation as well as the population distances between multiple
subpopulations to determine the subpopulation number, which is substantial in maintaining population diversity and enhancing
the exploration ability. Furthermore, the proposed multipopulation management strategy is embedded into popular EAs to solve
real-world complex automated warehouse scheduling problems. Experimental results show that the proposed multipopulation EAs

can easily be implemented and outperform other regular single-population algorithms to a large extent.

1. Introduction

Evolutionary algorithms (EAs) are fast and robust computa-
tion methods for global optimization and have been widely
applied in solving numerous real-world problems [1-5]. In
recent years, the concept of multipopulation is frequently dis-
cussed and used to improve the optimization performance of
EAs. In this regard, firstly, the original population is divided
into several small subpopulations for special purposes such
as large-scale problems and dynamic optimization problems.
Then, particular evolution mechanisms and operations, for
example, crossover and mutation for genetic algorithms
(GAs), are executed. The purpose of multipopulation is to
maintain population diversity and enhance exploration abil-
ity, which is the crucial factor to avoid premature convergence
when handling optimization problems.

Existing studies on multipopulation demonstrate that
such strategy has become one of the most effective methods
to enhance EA performance [6, 7]. The key reasons for
this are categorized as follows: (1) it divides the overall
populationsintormultiplerssubpopulationsyin which the pop-
ulation diversity can be maintained due to the fact that

different subpopulations can be located in different search
domains; (2) it is able to search different areas simultaneously,
leading the separated populations to rapidly find the optimal
solutions; and (3) various population-based EAs can be fast
and easily integrated within multipopulation methods. In the
research work carried out by Chang [8], a modified particle
swarm optimization (PSO) with multiple subpopulations
was utilized for multimodal function optimization problems.
Simulation results on complex multimodal functions showed
that the global and local system solutions were solved
by these best particles of subpopulations. Nseef et al. [9]
proposed an adaptive multipopulation artificial bee colony
(ABC) algorithm for dynamic optimization problems, where
multiple subpopulations were used to cope with dynamic
changes and to maintain the diversity. Experimental results
showed that the proposed multipopulation ABC was superior
to regular ABC on all tested instances. In the research work
carried out by Wu et al. [10], differential evolution (DE)
with multipopulation-based ensemble of mutation strategies
was used for optimizing benchmark functions, where each
subpopulation performed a mutation strategy. Experimental
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comparisons showed the competitive performance of the pro-
posed method. A hybrid multipopulation GA was employed
in [11] for the dynamic facility layout problem, where the
entire solution space was separated into different parts and
each subpopulation represented a separate part. Simulation
results showed that the proposed algorithm enjoyed the
superiority over other algorithms. Niu et al. [12] proposed a
symbiosis-based alternative learning multi-swarm PSO algo-
rithm, where the communication between subpopulations
used a learning method to select one example out of the
center position, the local best position, and the historical
best position including the experience of the internal and
external multiple subpopulations, to keep the diversity of
the population. The experimental results exhibited better
performance in terms of the convergence speed and opti-
mality. Xiao et al. [13] presented a novel multipopulation
coevolution immune optimization algorithm (IOA) for most
of the existing multimodal benchmarks, where coevolution of
three subpopulations was promoted through a self-adjusted
clone operator to enhance exploration and exploitation. The
authors proved that their method outperformed three known
immune algorithms and several other EAs. The introduction
of external archiving into a multipopulation harmony search
(HS) algorithm to solve dynamic optimization problems
was presented by Turky and Abdullah [14]. The results
on moving peak benchmarks showed that their modified
version was better than the original harmony search algo-
rithms. A multipopulation cooperative bat algorithm (BA)
was used in [15] for an artificial neural network model,
which mainly depended on the connection weights and
network structure. Experimental results showed that there
was a significant improvement by applying the proposed
algorithm to all the test cases. Ozsoydan and Baykasoglu
[16] employed a multipopulation firefly algorithm (FA) to
tackle dynamic optimization problems. The experiments on
moving peak benchmarks showed that the proposed algo-
rithm significantly improved system performance. Mausa
and Galinac Grbac [17] proposed a coevolutionary mul-
tipopulation genetic programming (GP) which combined
colonization and migration with three ensemble selection
strategies for classification in software defect prediction.
Computational results demonstrated the efficiency of the
proposed method.

Although multipopulation methods have shown success
for solving optimization problems, most of them use a preset
constant number of subpopulations during optimization
process [18]. The subpopulation number has an important
impact on performance of multipopulation EAs, because it
is related to the difficulty of the problem, which is not known
in advance. For a given problem, each EA may have different
subpopulation numbers during different phases of the search
process. For example, an algorithm with many subpopula-
tions may have effective search ability during the initial phase
of the optimization process, whereas the algorithm with a few
subpopulations may have better search ability during the later
phase of the optimization process. Therefore, it is of potential
to dynamically manage the number of subpopulations during
evolutionsprocess;based-onsthe-difficultysof the problem. It
may result in outstanding results without the essential use of
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dedicated evolution operators. Nonetheless in most of multi-
population EA literature [19, 20], the dynamic management
of subpopulation number is rarely mentioned.

In order to address this issue, this paper proposes a mul-
tipopulation management strategy to improve EA optimiza-
tion performance. The proposed method uses some simple
rules to dynamically manage the subpopulation number to
maintain population diversity. To verify its effectiveness, the
proposed multipopulation management strategy is embed-
ded into various popular algorithms to construct multipop-
ulation EAs. Then they are tested on a set of CEC bench-
mark functions and further applied to real-world complex
automated warehouse scheduling problems. Experimental
results show that the proposed multipopulation management
strategy can help EAs to obtain excellent results and outper-
form some state-of-the-art single-population algorithms in
the literature.

The following are the original contributions of this paper:
(1) a dynamic management strategy of the subpopulation
number is proposed to boost population diversity while pre-
serving simplicity for EAs; (2) the proposed multipopulation
management strategy is embedded into several popular EAs,
including the stud genetic algorithm (SGA), population-
based incremental learning (PBIL), self-adaptive differential
evolution (SaDE), and standard particle swarm optimization
(PSO2011); (3) the optimization ability of these multipopu-
lation EAs is investigated on a set of benchmark functions,
and further they are applied to solve real-world automated
warehouse scheduling problems.

The remainder of the paper is organized as follows.
Section 2 gives detail descriptions of multipopulation man-
agement strategy. Section 3 discusses the integration of
multipopulation management strategy with popular EAs.
Section 4 compares the performance of several EAs in
conjunction with multipopulation management strategy on
benchmark functions and complex warehouse scheduling
problems. Section 5 provides conclusions and suggestions for
future research.

2. Multipopulation Management Strategy

This section presents the basic challenges for multipopulation
EAs, as well as our proposed dynamic management for the
subpopulation number.

2.1. Challenges for Multipopulation Methods. In EAs, diversity
refers to differences among candidate solutions. As men-
tioned in most of EA literature, evolution progress lies
fundamentally on the existence of variation of population,
and the high diversity of a population greatly contributes to
EA performance. Diversity loss often results in premature
convergence, because EAs find themselves trapped in local
optimal solutions and lack population diversity to escape. So
the crucial point for EAs solving optimization problems is
how to maintain population diversity. In recent years, mul-
tipopulation methods are introduced into EAs and become
one of the most successful methods to improve optimization
performance, because such methods deal with candidate
solutions scattering over the entire search space. This feature
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helps population-based EAs to quickly achieve the global
optimal solutions.

To make multipopulation methods more efficient, several
crucial challenging issues in algorithm design need to be
addressed. The first question is how to determine the number
of subpopulations. If too many subpopulations distribute
in the problem, this may waste the limited computational
resources. However, too small number of subpopulations may
lead to limited effect of the multipopulation strategy. The
second question is how to determine the search area of each
subpopulation. If the search area of a subpopulation is too
small, there is a potential problem that the small isolated
subpopulation may converge to a local optimal solution.
In this case, the diversity will lose and the algorithm can
hardly make any progress. On the contrary, if the search
area of a subpopulation is too large, it is almost equal to
the search area of the original population, and it is very
hard to obtain better optimization performance compared
with the regular algorithms. The third question is how
to communicate between subpopulations. Many researchers
believe that communication between subpopulations is very
helpful during optimization because information can be
shared among subpopulations and, hence, this will accel-
erate the search process and promising solutions may be
found as well. In some current studies, the communication
between subpopulations is controlled by four parameters: (i)
a communication rate that defines the number of solutions
in a subpopulation to be sent to other subpopulations; (ii)
a communication policy that determines which solutions
are to be replaced by ones from other subpopulations; (iii)
a communication interval that sets up the frequency for
executing communication; and (iv) a connection topology
that defines how to connect between subpopulations.

For these challenges, most existing multipopulation
methods just use predefined values, which are based on
empirical experience, to determine the parameter setting of
subpopulations. Some other studies assume that some infor-
mation of optimization problems is known. In these cases,
problem information can be used to guide the configuration
of multipopulation parameters. However, for most of the
cases, we need to deeply explore these challenging issues to
develop excellent multipopulation EAs.

For the first challenge mentioned above, it is a good
method that we use the appropriate number of subpopula-
tions to maintain population diversity. This issue includes two
ways. The first way is to use a fixed number of subpopulations.
Most of current multipopulation methods fall into this group.
The advantage of this way is that it can be implemented
simply, and we only need to create a fixed number of subpop-
ulations in advance for the optimization problem. Generally
speaking, the more the peaks are in the fitness functions,
the more the subpopulations are needed. However, it is not
efficient to obtain the number of peaks of fitness functions
for practice problems. In addition, the distribution and shape
of fitness functions may also play a role in configuring the
subpopulation number. The second way is to use a variable
number of subpopulations. It is a difficult problem when
the number of subpopulations is increased or decreased. To
maintain population diversity, the subpopulation number

might be different at different states during evolution process.
For example, in the early stages, it needs a large number of
subpopulations because candidate solutions can scatter over
the entire search space, which leads to high population diver-
sity. But, in the later stages, a small number of subpopulations
are in favor of reducing diversity to fast converge to global
best solutions. So the dynamic change of the subpopulation
number should be in line with the population diversity. In
many previous studies [21, 22], it often splits off from a main
population into multiple parts to increase the subpopulation
number and merges a set of small subpopulations into a
main population to decrease the subpopulation number. The
common characteristic of these methods is that they often
adopt a specific cluster method to complete these operations.
Therefore, additional knowledge about clustering is needed
meanwhile increasing the complexity of algorithms, which
is not desirable for solving some complex problems with the
limitation of computational resource.

Undoubtedly, it is a good idea to dynamically manage
the number of subpopulations during evolution process,
without introducing additional complex mechanisms and
considering the difficulty of the optimization problems in
advance.

2.2. Ways to Manage Subpopulation Number. This part intro-
duces a simple and effective multipopulation management
strategy, to dynamically increase or decrease the subpopula-
tion number. Compared with other multipopulation meth-
ods, the proposed method highlights the challenge of deter-
mining the number of subpopulations.

In the ways to manage the subpopulation number, four
basic rules are considered:

(1) The maximum number of subpopulations is limited in
order to prevent computational burden on too many
coevolving subpopulations.

(2) The subpopulation number decreases, when we
merge the same subpopulations or delete the existing
subpopulations.

(3) The subpopulation number increases, when we create
some new subpopulations or divide the existing sub-
population.

(4) The interaction of subpopulations is not considered
because it is so smart that it affects the investigation
on multipopulation management strategy.

Based on the above basic rules, two open problems need
to be solved in the proposed multipopulation management
strategy. First, what is the best condition to increase or
decrease the subpopulation number? Before answering this
question, we firstly consider that the purpose of multipopu-
lation methods is to maintain population diversity. So it is an
effective method to build the relationship between population
diversity and control condition of the subpopulation number.
Quantitatively, we need some simple approaches to measure
diversity. Euclidean distance is probably the most widely used
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type of diversity measure nowadays. Euclidian distance dg
between two solutions s; and s; can be calculated as

> (sa- Sﬂ)z’ ®

I=1

dg (Si’sj) =

where s; and s denote the Ith solution variables in the
solutions s; and s;, respectively, and 7 is the number of
solution variables.

Equation (1) is used to measure individual distance
between two solutions. In the multipopulation method, we
need to further consider population distance between two
subpopulations. To calculate population distance, the concept
of average population is introduced, which is a vector of
average value of all solutions in the same population. We
use s to represent average population, which is calculated as
follows:

Zf\:ll S )

where N is the size of the population.
The corresponding standard deviation of average popula-
tion is calculated as

0. = \/Zf\—Il (s =5) 3)

N

Then, we define population distance Dy(P;, P;) between two
subpopulations P, and P;, which is represented as

Dg (Pi’Pj) =dp(5.1) —k[dp (5,0) +dg (o)), (4)

wheredy(5,t), d (5, 0,), and dg(t, 0,) are Euclidean distances,
5 and t are average populations, and o, and o, are standard
deviations for subpopulations P; and P;, respectively. Equa-
tion (4) denotes the fact that population distance between
two subpopulations is related to Euclidean distances between
their average populations, and solution distribution in each
subpopulation. If Dy is small, areas occupied by subpopula-
tions P; and P; are overlapping, which means that they have
great similarity. The coefficient k is set to 2 on the basis of
normal distribution characteristic [23], according to 95% of
solutions being located in distance of two standard deviations
from average populations.

Next, we consider several diversity cases, and they are
defined by the following ways:

(1) As a diversity between individuals in the same sub-
population;

(2) As a diversity between a subpopulation and other
subpopulations;

(3) As a diversity between the current subpopulation and
its parent subpopulation.

Note that the first case is taken as individual diversity; the
second and third cases are taken as population diversity.

©neceywerhavestheymethodyofimeasuring diversity, only a
threshold value T is set to decide the condition to increase
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or decrease the subpopulation number. For individuals in the
same subpopulation, if dy > T for any one of individual
distances, we reckon that they are different, and if d < T for
all individual distances, they are considered to be similar. In
the same way, for any two subpopulations, if D > T, they are
regarded as of diversity,and if Dy < T, we think that they have
similarity. Note that similarity is the opposite of diversity; T
can be a parameter by a user or can be an adaptive parameter.

Second, how do we increase or decrease the subpopula-
tion number during evolution process? That is, how do we
create new subpopulations, or delete redundant subpopu-
lations? Based on the diversity concepts mentioned above,
multipopulation management strategy can be roughly clas-
sified into three cases. In the first case, when all individuals
are similar in the certain subpopulation, we firstly randomly
preserve one of individuals because they are almost the same
and then delete this subpopulation. Meanwhile, we create a
new subpopulation consisting of the following individuals:
1/3 of individuals are copies of the preserved individual, 1/3
of individuals are from the best individuals in the entire
population, and 1/3 of individuals are randomly generated.
In the second case, when a subpopulation is similar to other
subpopulations within the whole population, we directly
delete this subpopulation to save computational resources.
In the third case, when a subpopulation is similar to its
parent subpopulation, we create a new subpopulation, and it
consists of the following individuals: 50% of individuals are
copies of the best individual in the latest generation, and the
other 50% are generated randomly from the neighborhood
of the best individual with the normal distribution. Note that
the maximum number of subpopulations is limited to the
preset number to prevent too many subpopulations of being
involved. Figure 1 shows the multipopulation management
strategy during evolution process.

3. Integration with EAs

Now we integrate the proposed multipopulation manage-
ment strategy with EAs, called multipopulation EAs, and
the flowchart is shown in Figure 2. It starts by setting the
parameters. It creates a population of candidate solutions
and evaluates them. Next, the population of solutions is
divided into multiple subpopulations. Each subpopulation
runs an EA paradigm to generate its own offspring. Then,
subpopulations perform diversity judgement, and, based on
diversity levels, it creates or deletes subpopulations. Finally,
it checks the stopping condition. In this way, EAs always
can dynamically manage the subpopulation number, lead-
ing to better performance than the corresponding single-
population EAs. The pseudocode of multipopulation EAs is
shown in Algorithm 1.

The main steps of the proposed multipopulation EAs are
further described in detail below.

Step I (set parameters). The main parameters of the proposed
multipopulation EAs are initialized. They include the param-
eters of EA paradigms, the maximum number of iterations,
the size of population, the number of initial subpopulations,
and the maximum number of subpopulations.
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FIGURE 1: Multipopulation management strategy during evolution process.

Step 2 (initialize the population of solutions). It randomly
generates a set of candidate solutions between the lower and
upper boundaries.

Step 3 (evaluate the population of solutions). The fitness
of the generated solutions is calculated using the objective
function.

Step 4 (divide the population). The initial population is
divided into multiple subpopulations with the same popula-
tion size, and each subpopulation is randomly assigned from
solutions in the population.

Step 5 (create offspring subpopulations). Different subpop-
ulations are executed independently by EA paradigms to
generate their own offspring subpopulations. Note that, for
EA paradigms, we can use the same EA for all subpopulations,
or we also can use the different EA for each subpopulation.

Step 6 (judge diversity and manage subpopulations). If a
subpopulation is similar to other subpopulations, directly
delete this subpopulation. If it is similar to its parent subpop-
ulation, create a new subpopulation. If individuals are similar
in a subpopulation, firstly delete this subpopulation and then
create a new subpopulation. For details see Section 2.2.

Step 7 (evaluate offspring subpopulations and check the
stopping condition). If the termination criterion is not met,
go to Step 5; otherwise, terminate and output the evaluation
results. Here the terminati iteriongis the maximum

4. Experimental Results

In this section the performances of the proposed multipopu-
lation EAs are investigated. Section 4.1 describes the experi-
mental setup, Section 4.2 presents performance comparisons
on the 2013 CEC benchmark functions, and Section 4.3
applies the proposed multipopulation EAs to a real-world
complex automated warehouse scheduling problem.

4.1. Simulation Setup. The performances of the proposed
multipopulation EAs are evaluated on the 28 benchmark
functions presented in Table 1, which are from the 2013
Congress on Evolutionary Computation (CEC) [24].

The popular EAs used in this paper include SGA, PBIL,
SaDE, and PSO2011. We select SGA because it is an improve-
ment of the basic GA that uses the best individual in each
generation for crossover [25]. We select PBIL because it
is the most successful variant of estimation of distribution
algorithms [26]. We select SaDE because it is one of the
most powerful DE algorithms and has demonstrated excel-
lent performance on many problems [27, 28]. We select
PSO2011 because it is popular in the literature and contains
improvements gained as a result of many years of PSO studies
[29, 30].

The next step is to set the parameters of each multi-
population EA. For SGA we use real coding, roulette-wheel
selection, single-point crossover with a crossover probability
of 1, and a mutation probability of 0.001. For PBIL we
use learning rate # = 0.1, the number of best and worst
individuals used to update probabilities in each generation is
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(6)  For each subpopulation do

(8) End for

(11) End while

(1) Set the parameters of the proposed multi-population EAs

(2) Randomly initialize the entire population

(3) Evaluate the fitness of all candidate solutions in the population
(4) Divide the population into multiple subpopulations

(5) While the halting criterion is not satisfied do

(7) Perform an independent EA to create its own offspring subpopulation

(9)  Judge diversity and manage offspring subpopulations, and the detail sees Section 2.2
(10) Evaluate the fitness of all offspring subpopulations

ALGORITHM 1: Pseudocode of the proposed multipopulation EAs.

Npest = Nyorst = 5> and the standard deviation for mutation
linearly decreases from 10% of the parameter range at the
first generation to 2% of the parameter range at the final
generation [26]. The SaDE parameter settings are adapted
according to the learning progress [27]: the scaling factor F is
randomly sampled from the normal distribution N(0.5, 0.3),
and the crossover rate CR follows the normal distribution
N(0.5, 0.1). For PSO2011, we use an inertia weight w = 1/(2 -
log(2)), a cognitive constant ¢; = 0.5 + log(2), and a social
constant ¢, for neighborhood interaction that is the same as
q.

In addition, we initially use three subpopulations, and the
maximum subpopulation number is set to six. Each subpop-
ulation uses the same EA, and the population size of each
subpopulation is 25. For fair comparisons, the population
size of single-population EAs is set to 150. We evaluate each
function in D = 30 dimensions with the function evaluation
limit of D x 10,000. All algorithms are terminated after the
maximum number of function evaluations is reached, or if
the objective function error value is below 107°.

4.2. Performance Comparisons. We simulate each algorithm
25 times on each benchmark, and the results are shown
in Tables 2 and 3. The tables show that multipopulation
SaDE (M-SaDE) performs best on 18 functions (F4, F6,
F7, F9, F10, F11, F12, F13, F14, F15, F16, F18, F19, F20,
F21, F22, F26, and F28), and multipopulation PSO2011 (M-
PSO2011) performs best on 9 functions (F2, F3, F5, F8,
F17, F23, F24, F25, and F27). For function Fl, both M-
SaDE and M-PSO2011 obtain the global optimal solutions.
Furthermore, we briefly consider the types of functions
for which the various algorithms are best-suited. Tables 2
and 3 show that the best-performing algorithm on each of
the unimodal functions (F1-F5) is always M-PSO2011, and
the best-performing algorithm on each of the multimodal
functions (F6-F20) is always M-SaDE. We also note from
these tables that M-PSO2011 performs as well as M-SaDE
on the composition functions (F21-F28). This implies that
no single algorithm can be the best for every problem, and,
fordifferentoptimizationproblemssdifferent algorithms have
their own superiority to obtain the best performance.

Tables 2 and 3 also show that the total performances of
multipopulation EAs, including M-SGA, M-PBIL, M-SaDE,
and M-PSO2011, are better than their corresponding single-
population EAs. This may be due to the proposed multi-
population management strategy that enhances population
diversity to improve optimization performance.

The average running times of all algorithms are shown in
the last rows of Tables 2 and 3. Here MATLAB® is used as
the programming language, and the computer is a 2.40 GHz
Intel Pentium® 4 CPU with 4 GB of memory. We find that
the average running times of the multipopulation EAs are
less than their corresponding single-population algorithms.
For example, the average running time of multipopulation
SGA (M-SGA) is less than single-population SGA (S-SGA).
The reason is that multipopulation EAs use multiple parallel
subpopulations to reduce computation time with the same
total population size as the corresponding single-population
algorithms. So multiple subpopulations are also amenable to
parallel processing, and they can further reduce computa-
tional effort.

In order to further compare the performance of the mul-
tipopulation and single-population EAs, we use the Wilcoxon
method to test for statistical significance. The Wilcoxon
method is a nonparametric statistical test to determine
whether differences between groups of data are statistically
significant when the assumptions that the differences are
independent and identically normally distributed are not
satisfied [31-33]. The Wilcoxon test results are shown in
Table 4, where the pairs are marked if the difference between
each pair of algorithms is statistically significant.

The results in Table 4 are divided into S-SGA versus M-
SGA group, S-PBIL versus M-PBIL group, S-SaDE versus M-
SaDE group, and S-PSO2011 versus M-PSO2011 group. For
each pair of algorithms we calculate B/S/W scores, where “B”
denotes the number of times that the left algorithm performs
better than the right one, “S” denotes the number of times
that the left algorithm performs the same as the right one
(statistically speaking), and “W” denotes the number of times
that the left algorithm performs worse than the right one.

Table 4 shows that, for S-SGA versus M-SGA, the B/S/'W
score is 1/7/20, which indicates that S-SGA outperforms M-
SGA one time, S-SGA is statistically the same as M-SGA
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Set the parameters
(EA parameters, number of iterations, maximum
subpopulation number)

Initialize the population
(randomly generate a population of solutions)

Evaluate the population

Divide the population into multiple
subpopulations

l

Subpopulation 1 Subpopulation2 | Subpopulation m
EA paradigm EA paradigm | EA paradigm

Delete the
subpopulation

Subpopulation similar to other
subpopulations

Create a new
subpopulation

Subpopulation similar to its parent
subpopulation

Create a new
subpopulation

Individual similar to other individuals
in the same subpopulation

Evaluate the population, and stopping
condition satisfied?

FIGURE 2: Flowchart of the proposed multipopulation EAs.
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TaBLE 1: 2013 CEC benchmark functions, where the search range of all functions is —100 < s; < 100. More details about these functions can

be found in [24].

Function Function Name Minimum

F1 Sphere Function -1400
F2 Rotated High Conditioned Elliptic Function -1300

Unimodal functions F3 Rotated Bent Cigar Function -1200
F4 Rotated Discus Function -1100
F5 Different Powers Function —-1000
F6 Rotated Rosenbrock Function -900
F7 Rotated Schaffer F7 Function —800
F8 Rotated Ackley Function -700
Fo Rotated Weierstrass Function -600
F10 Rotated Griewank Function -500
F11 Rastrigin Function —-400
F12 Rotated Rastrigin Function -300

Basic multimodal functions F13 Discontinuous Rotated Rastrigin Function -200
Fl14 Schwefel Function -100
F15 Rotated Schwefel Function 100
F16 Rotated Katsuura Function 200
F17 Lunacek Bi_Rastrigin Function 300
F18 Rotated Lunacek Bi_Rastrigin Function 400
F19 Expanded Griewank plus Rosenbrock Function 500
F20 Expanded Schaffer F6 Function 600
F21 Composition Function 1 (n = 5, rotated) 700
F22 Composition Function 2 (n = 3, unrotated) 800
F23 Composition Function 3 (n = 3, rotated) 900

Composition functions F24 Composition Function 4 (n = 3, rotated) 1000
F25 Composition Function 5 (n = 3, rotated) 1100
F26 Composition Function 6 (n = 5, rotated) 1200
F27 Composition Function 7 (n = 5, rotated) 1300
F28 Composition Function 8 (1 = 5, rotated) 1400

seven times, and M-SGA outperforms S-SGA twenty times.
For S-PBIL versus M-PBIL, the B/S/W score is 2/3/23, which
indicates that S-PBIL outperforms M-PBIL two times, S-
PBIL is statistically the same as M-PBIL three times, and M-
PBIL outperforms S-PBIL twenty-three times. For S-SaDE
versus M-SaDE, the B/S/W score is 0/5/23, which indicates
that S-SaDE does not outperform M-SaDE in any time, S-
SaDE is statistically the same as M-SaDE five times, and
M-SaDE outperforms S-SaDE twenty-three times. For S-
PSO2011 versus M-PSO2011, the B/S/W score is 1/5/22, which
indicates that S-PSO2011 outperforms M-PSO2011 one time,
S-PSO2011 is statistically the same as M-PSO2011 five times,
and M-PSO2011 outperforms S-PSO2011 twenty-two times.
From the results we see that multipopulation versions of
these algorithms are significantly better than their single-
population versions on the CEC 2013 benchmark functions,
which further verifies the conclusions obtained in Tables
2 and 3. Such statistical results show that the proposed
multipopulation management strategy is a good method to
improve the optimization performance for EAs. The reason
foritsrcompetitivesperformancesissthat:-multipopulation EAs
effectively manage the number of subpopulations in different

evolution phases throughout the evolution, which can sig-
nificantly maintain population diversity, compared to single-
population EAs.

4.3. Application to Complex Warehouse Scheduling Problems.
In this section, the proposed multipopulation EAs are applied
to a real-world complex automated warehouse scheduling
problems described in [34], which are formulated as a con-
strained single-objective optimization problem. Warehouse
scheduling in the supply chain is challenging because it is
proved as a typical NP-hard problem, which is one of the most
challenging types of combinatorial optimization problem [35,
36]. Layout of the warehouse system we study is shown in
Figure 3, and more details about cost function, constraints,
and parameter settings of the warehouse scheduling problem
can be referred to [34].

In this experiment, we use the same simple-population
and multipopulation EAs as those in the benchmark simu-
lations. The constraint-handling method is based on feasi-
bility rules by Deb [37], which has demonstrated promising
performance in dealing with constraints. We consider five
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TaBLE 2: Comparisons of the best error values of the 2013 CEC benchmark functions for SGA and PBIL. In the table, “S-” and “M-”
denote the single-population version and multipopulation version of algorithms, respectively. Here [a + b] indicates the mean value and
the corresponding standard deviation of 25 independent simulations. Average CPU times (minutes) are shown in the last row of the table.

Function S-SGA M-SGA S-PBIL M-PBIL

F1 1.35E + 02 + 5.29E + 01 8.43E + 00 £ 1.90E + 00 6.70E — 14 + 4.39E - 15 6.76E + 00 + 7.85E + 00
F2 3.27E + 08 + 1.52E + 07 5.76E + 06 + 3.74E + 05 5.72E + 06 + 1.54E + 05 3.34E + 06 + 7.89E + 05
F3 3.21E + 10 + 6.65E + 09 7.81E + 10 + 5.48E + 09 1.65E + 09 + 2.48E + 08 1.23E + 08 £ 5.54E + 07
F4 7.20E + 08 + 1.40E + 07 2.64E + 07 + 6.86E + 06 2.32E + 07 £ 4.90E + 06 5.70E + 06 + 6.36E + 05
F5 3.26E + 04 + 5.75E + 03 2.43E + 04 + 1.47E + 03 2.45E + 05 + 5.76E + 04 7.89E + 02 + 2.65E + 01
Fé6 9.04E + 07 £ 1.23E + 06 6.34E + 05 + 2.75E + 04 1.22E + 04 + 4.65E + 03 4.32E + 04 + 9.08E + 03
F7 3.17E + 07 £ 2.44E + 06 8.86E + 05 + 4.23E + 04 7.32E + 06 + 6.87E + 05 4.43E + 05 £ 1.24E + 04
F8 5.32E + 06 + 1.72E + 05 9.09E + 03 + 8.32F + 02 5.70E + 05 + 1.66E + 04 5.54E + 02 + 8.89E + 01
F9 4.40E + 07 + 8.16E + 06 713E + 04 + 7.09E + 03 7.73E + 04 £ 1.45E + 03 1.28E + 04 + 5.43E + 03
F10 8.90E + 07 + 3.53E + 06 2.35E + 06 + 5.47E + 05 3.43E + 03 + 2.80E + 02 6.54E + 02 + 3.34E + 01
Fl1 2.19E + 06 + 2.80E + 05 7.52E + 07 + 1.66E + 06 6.68E + 04 + 1.58E + 03 4.72E + 02 + 780E + 01
F12 5.43E + 03 + L.10E + 02 6.60E + 01 + 8.93E + 00 7.70E + 03 £ 5.43E + 02 1.23E + 01 + 4.45E + 00
F13 7.04E + 04 + 5.76E + 03 6.44E + 02 £ 1.68E + 00 3.43E + 03 £ 6.65E + 02 8.65E + 02 + 3.34E + 01
F14 5.44E + 03 + 8.09E + 02 5.21E + 03 £ 9.06E + 02 7.98E + 04 + 2.43E + 03 1.82E + 02 + 4.37E + 01
F15 1.17E + 05 + 3.56E + 04 3.46E + 05 + 5.32E + 03 1.21E + 05 + 5.63E + 04 2.58E + 05 + 6.74E + 04
F16 4.56E + 05 + 2.17E + 04 8.97E + 03 + 4.33E + 02 3.65E + 05 + 3.03E + 04 8.91E + 03 + 6.65E + 02
F17 3.40E + 04 + 8.90E + 03 8.05E + 02 + 1.12E + 01 1.25E + 04 = 7.70E + 03 3.43E + 02 £ 1.54E + 01
F18 1.14E + 08 + 6.83E + 07 3.54E + 06 £ 2.65E + 05 2.17E + 05 £ 4.54E + 04 7.78E + 03 + 1.87E + 02
F19 2.44E + 07 £ 3.27E + 06 1.32E + 07 + 9.04E + 06 8.39E + 05 + 2.78E + 04 5.34E + 03 + 6.65E + 02
F20 1.81E + 05 + 2.59E + 04 1.88E + 04 + 5.39E + 03 2.12E + 05 + 1.50E + 04 4.23E + 03 + LI6E + 02
F21 6.16E + 05 + 7Z.05E + 04 2.17E + 03 + 3.54E + 02 5.56E + 05 + 4.43E + 04 6.54E + 03 + 1.56E + 02
F22 9.12E + 06 + 4.76E + 05 2.90E + 03 £ 2.57E + 02 4.42E + 04 £ 7.87E + 03 3.50E + 03 £ 7.71E + 02
F23 2.35E + 05 £ 1.32E + 04 2.16E + 06 + 4.56F + 05 1.87E + 04 + 1.21E + 03 6.63E + 04 + 2.19E + 03
F24 6.88E + 06 + 2.51E + 05 3.32E + 04 + 4.51E + 03 2.33E + 05 £ 5.67E + 04 4.35E + 03 + 1.26E + 02
F25 9.02E + 06 + 1.43E + 05 1.68E + 04 + 6.39E + 03 7.09E + 05 + 4.80E + 05 4.92E + 03 £ 3.58E + 02
F26 2.53E + 05 + 7.12E + 04 7.77E + 05 + 6.30E + 04 1.45E + 05 + 8.91E + 04 1.32E + 04 + 6.07E + 03
F27 3.75E + 06 + 4.66E + 05 1.47E + 04 + 2.83E + 03 3.76E + 04 + 4.32E + 03 1.87E + 02 + 4.16E + 02
F28 1.89E + 07 + 5.25E + 06 2.41E + 05 + 1.38E + 04 5.98E + 07 + 7.54E + 06 3.65E + 05 + 6.87E + 04
CPU time 117.86 96.35 217.85 176.37

simulation schemes. Scheme 1 (g = 20, h = 20) is described
as follows.

pr: (12,6, 2,50, 1), p,: (51, 8, 1, 45, 1), ps: (40, 3, 5, 46,
1), py: (37,3, 4,113,1),

ps: (14,7, 1, 40, 1), pg: (13, 5, 2, 50, 1), p,: (45, 5, 5, 50,
1), pg: (18,7, 3,33, 1),

Po: (7,3, 2,35, 1), pyo: (11, 4, 3,110, 1), p,,: (15, 2, 1, 34,
1)> p12: (36: 87 4) 40) 1))

P13 (8,6,5,47,1), py: (56,2, 3,34, 1), pys: (42, 8, 3, 30,
1), prg: (23,4, 1,50, 1),

Py (4,6,2,50,1), prg: (13, 1,1, 36, 1), pyo: (39, 6, 4, 42,
1), pyo: (45,6, 5,55,1)

Par: (50,8,1,67,2), pyot (3,1, 2,74, 2), pyy: (55, 4, 3, 68,
2): P243 (6) 7> 47 853 2):

Pos: (17, 4, 5, 74, 2), pas: (60, 7, 3, 80, 2), p,y: (35, 6, 2,
67, 2), pg: (15, 2,1,70, 2),
Pagin(57ds2n8052)spaga2slsids6252), ps,: (25, 8, 2, 76,
2), p3p: (5,2, 4, 64, 2),

a3 (17,5, 3,76, 2), pag: (41,2, 5,91, 2), pss: (19, 3, 2, 70,
2)) p36: (207 1) 1) 827 2)7

D371 (42,6,2,88,2), pag: (32,6, 3,75,2), p3g: (9,71, 82,
2), pao: (58,5, 4, 69,2)

In Scheme 1, g is the number of storage products, and h is the
number of retrieval products. p; is the storage unit, and it is
denoted by (x, y, z, w, 0), where x, y, and z are the Euclidean
coordinates of each storage unit, w is the weight coefficient
that affects the scheduling quality, and 6 = 1 indicates a
storage product and 8 = 2 indicates a retrieval product.

Scheme 2 (g = 20,h = 16) includes all the storage
products of Scheme 1 but only the first 16 retrieval products of
Scheme 1. Scheme 3 (g = 20, h = 12) includes all the storage
products of Scheme 1 but only the first 12 retrieval products.
Scheme 4 (g = 16,h = 20) includes the first 16 storage
products of Scheme 1and all of the retrieval products. Scheme
5 (g = 12,h = 20) includes the first 12 storage products of
Scheme 1 and all of the retrieval products.

Optimization results of different simple-population and
multipopulation EAs are summarized in Table 5. From the
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TaBLE 3: Comparisons of the best error values of the 2013 CEC benchmark functions for SaDE and PSO2011. In the table, “S-” and “M-"
denote the single-population version and multipopulation version of algorithms, respectively. Here [a + b] indicates the mean value and the
corresponding standard deviation of 25 independent simulations. The best result in each row (Tables 2 and 3 combined) is shown in bold font.
Average CPU times (minutes) are shown in the last row of the table.

Function S-SaDE M-SaDE S-PSO2011 M-PSO2011

F1 543E-10+ 1.36E - 11 0.00E + 00 + 0.00E + 00 6.89E - 19+ 7.97E - 20 0.00E + 00 + 0.00E + 00
F2 4.25E + 05+ 3.12E + 04 3.92E + 05 + 5.76E + 04 1.32E + 06 £+ 4.80E + 05 1.34E + 05 + 5.67E + 04
F3 5.99E + 07 + 3.76E + 06 1.89E + 07 + 7.54E + 06 7.86E + 07 £ 9.92E + 06 2.43E + 06 + 4.72E + 05
F4 1.25E + 06 + 4.68E + 05 1.40E + 05 + 4.35E + 04 1.17E + 06 + 5.54E + 05 6.76E + 06 + 5.31E + 05
E5 5.34E + 02 £ 3.70E + 01 744E + 00 £ 2.31E + 00 1.15E + 02 £ 6.18E + 01 0.00E + 00 + 0.00E + 00
F6 1.45E + 02 £ 6.34E + 01 5.67E + 00 + 4.78E + 00 5.37E + 04 + 6.76E + 03 4.32E + 03 + 7.98E + 02
F7 291E + 02 £ 4.56E + 01 7.07E + 00 + 8.92E - 01 1.25E + 04 £ 7.08E + 03 1.54E + 02 £ 6.97E + 01
F8 8.32E + 03 £ 1.57E + 02 5.65E + 01 + 1.23E + 00 943E + 02 +2.12E + 01 2.82E + 01 £ 9.33E + 00
F9 6.43E + 03 + 5.54F + 02 3.47E + 01 + 6.38E + 00 441E + 03 + 3.56E + 02 5.23E + 02 + 4.34E + 01
F10 232E+03+1.17E + 02 7.81E + 00 + 1.22E - 01 3.76E + 01 £ 1.89E + 00 5.67E + 01 +£ 3.21E + 00
Fl1 6.33E + 02 £ 2.25E + 01 8.90E + 00 + 3.86E + 00 6.65E + 03 + 8.54F + 02 1.45E + 01 + 2.54F + 00
F12 4.19E + 03 £ 4.32E + 02 7.78E + 01 + 5.47E + 00 243E + 03 + 1.26E + 02 7.87E + 01 + 6.23E + 01
F13 5.76E + 03 + 2.45E + 02 6.60E + 01 + 3.71E + 00 6.54E + 04 + 6.13E + 03 1.34E + 02 + 8.98E + 01
F14 2.65E + 01 + 1.36E + 00 5.65E + 01 + 8.89E + 00 5.48E + 02 + 3.87E + 01 6.34E + 01 + 5.26E + 00
F15 5.20E + 04 + 6.65E + 03 4.36E + 03 + 2.17E + 02 4.19E + 05 £ 6.22E + 04 4.55E + 04 + 3.29E + 03
Fl16 3.76E + 03 + 6.72E + 02 5.54E + 00 + 2.16E + 00 1.00E + 03 £ 4.55E + 02 740E + 02 + 1.23E + 01
F17 4.32E + 03 £ 9.24E + 02 4.45E + 01 + 3.92E - 01 1.32E + 02 £ 7.64E + 01 6.76E + 00 + 1.65E — 01
F18 1.18E + 03 + 4.80E + 02 1.23E + 01 + 7.89E + 00 2.28E + 03 + 6.59E + 02 2.45E +02 +7.89E + 01
F19 5.92E + 02 + 6.43E + 01 7.76E + 01 + 4.37E + 00 8.98E + 03 + 1.66E + 02 5.36E + 02 + 4.75E + 01
F20 1.32E + 01 + 5.44E + 00 6.67E + 01 + 3.41E + 00 1.45E + 03 £ 9.81E + 02 2.38E + 02 + 7.62E + 01
F21 346E + 03 + 1.84E + 02 2.48E + 02 + 7.80E + 01 5.99E + 04 + 4.13E + 03 543E + 02 + 8.90E + 01
F22 7.79E + 02 £ 5.62E + 01 1.22E + 01 + 3.17E + 00 1.76E + 03 £ 3.32E + 02 5.32E + 03 £+ 4.54E + 02
F23 2.33E+ 05+ 1.75E + 04 8.92E + 03 + 3.44E + 03 5.53E + 05 + 6.96E + 04 1.26E + 03 + 3.33E + 02
F24 4.46E + 04 + 8.08E + 03 7.28E + 02 + 5.38E + 00 6.87E + 06 + 5.43E + 05 6.43E + 02 + 9.09E + 01
F25 342E +04 £ 1.37E+03 9.03E + 02 + 1.28E + 01 9.06E + 05 + 8.85E + 04 1.21E + 02 + 4.58E + 01
F26 6.60E + 02 + 2.76E + 01 4.22F + 02 + 5.76E + 01 1.79E + 03 £ 541E + 02 2.14E + 03 + 8.66F + 02
F27 2.52E+ 03 +441E +02 8.09E + 02 + 8.90E + 01 3.99E + 04 +3.72E + 03 6.43E + 02 + 1.37E + 01
F28 7.72E + 03 + 8.58E + 02 3.60E + 02 + 5.81E + 01 1.18E + 04 + 2.56E + 03 9.13E + 03 + 6.55E + 02
CPU time 185.32 149.05 138.70 118.52

table, it is seen that M-SaDE performs best for all of scheme
cases because of its lowest scheduling quality effect. Further-
more, we find that multipopulation EAs perform significantly
better than single-population EAs on these scheme cases of
the warehouse scheduling problem, which again verifies the
conclusions obtained in the test of benchmark functions.

A sample multipopulation SaDE scheduling route output
is shown in Table 6 for Scheme 1. It is seen that the warehouse
scheduling problem is divided into 5 routes, where machine 1
implements routes 1 and 2, and machine 2 implements routes
3, 4, and 5. Each route includes 8 storage units, where the
first 4 storage units are used to store products, and the last
4 storage units are used to retrieve products.

5. Conclusions

In this paper, we first propose a management strategy for the
numberof:multiple;subpopulations:based-on individual dis-
tance and population distance, and it dynamically increases

or decreases the subpopulation number during evolution
process to maintain population diversity. Then we integrate
the proposed multipopulation management strategy into
EAs, including SGA, PBIL, SaDE, and PSO2011, to develop
new multipopulation EAs. Next, the proposed multipopu-
lation EAs are tested on CEC benchmark functions, and
empirical results show that any single-population EA can be
easily extended to a multipopulation EA by the proposed
strategy, and the proposed multipopulation methods can
obtain the better optimization performance than single-
population EAs. Finally, these multipopulation EAs are used
to solve real-world complex automated warehouse scheduling
problems, and experimental results show that the proposed
multipopulation EAs can obtain satisfied solutions.

In future research, at least three directions are envisioned.
First, the proposed multipopulation management strategy
has been combined into several EAs and improves their opti-
mization performance. The multipopulation management
strategy presented here could be extended for more EAs
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TAaBLE 4: Wilcoxon test results for pairwise algorithm comparisons. If the difference between the algorithms is statistically significant, the
pairs are marked as follows: “x-0” shows that the left algorithm is better than the right one; “o-x” shows that the right algorithm is better than
the left one. The B/S/W row at the bottom shows the total scores, where “B” denotes the number of times the left algorithm performs better,
“S” denotes the number of times the two algorithms perform the same, and “W” denotes the number of times the left algorithm performs
worse than the right one.

Function S-SGA versus M-SGA S-PBIL versus M-PBIL S-SaDE versus M-SaDE S-PSO2011 versus M-PSO2011
F1 0-X 0-X 0-X 0-X
F2 0-X - - -
F3 - 0-X - 0-X
F4 0-X 0-X 0-X -
F5 - 0-X 0-X 0-X
Fé6 0-X X-0 0-X 0-X
F7 0-X 0-X 0-X 0-X
F8 0-X 0-X 0-X 0-X
F9 0-X - 0-X 0-X
F10 0-X 0-X 0-X -
F11 X-0 0-X 0-X 0-X
F12 0-X 0-X 0-X 0-X
F13 0-X 0-X 0-X 0-X
Fl14 - 0-X - 0-X
F15 - - 0-X 0-X
F16 0-X 0-X 0-X -
F17 0-X 0-X 0-X 0-X
F18 0-X 0-X 0-X 0-X
F19 - 0-X 0-X 0-X
F20 0-X 0-X - 0-X
F21 0-X 0-X 0-X 0-X
F22 0-X 0-X 0-X X-0
F23 - X-0 0-X 0-X
F24 0-X 0-X 0-X 0-X
F25 0-X 0-X 0-X 0-X
F26 - 0-X - -
F27 0-X 0-X 0-X 0-X
F28 0-X 0-X 0-X 0-X
B/S/W 1/7/20 2/3/23 0/5/23 1/5/22

TAaBLE 5: Optimization results for 5 schemes of the warehouse scheduling problem. Here a(b) denotes the mean value and corresponding
standard deviation of the scheduling quality effect. The best results in each row are shown in boldface font.

Problem (g, h) S-SGA M-SGA S-PBIL M-PBIL

Scheme 1 (20, 20) 2629.3 (75.4) 23177 (47.6) 2613.1 (55.9) 2304.1 (28.3)
Scheme 2 (20, 16) 16271 (66.2) 1423.7 (48.6) 1599.4 (57.3) 1398.4 (66.4)
Scheme 3 (20, 12) 914.5 (32.7) 852.3 (53.2) 973.4 (44.1) 886.0 (53.7)
Scheme 4 (16, 20) 1533.2 (82.1) 1295.4 (59.6) 1436.1 (72.4) 1266.7 (36.7)
Scheme 5 (12, 20) 884.4 (26.4) 712.6 (52.0) 804.3 (36.7) 699.4 (45.1)
Problem (g,h) S-SaDE M-SaDE S-PSO2011 M-PSO2011
Scheme 1 (20, 20) 2322.5 (79.3) 2003.7 (56.6) 2395.6 (47.5) 2113.8 (39.1)
Scheme 2 (20,16) 1453.6 (46.2) 1205.4 (47.3) 1490.1 (29.3) 13476 (61.7)
Scheme 3 (20,12) 812.6 (39.8) 705.3 (55.4) 884.2 (16.7) 783.3 (24.5)
Scheme 4 (16, 20) 1233.8 (38.0) 1100.9 (41.2) 1312.5 (53.4) 1194.2 (29.9)

Scheme 5 12, 20 711.5 (36.7) 621.8 (55.1) 746.3 (28.4) 686.3 (33.1)
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TABLE 6: Scheduling orders as optimized by multipopulation SaDE. “Machine” denotes the machine number index, “Route” denotes the route
number index, and “Scheduling orders” denote the scheduling orders that one machine implements in one route.

Machine index Route Scheduling orders
Machine 1 1 P11 ™ P2 2Py ™ P15 7 Pas ™ P ™ P 7 Py
2 Ps = Ps P19 ™ P13 2 Pay P35 P P
3 P1 = P16 = Pa 7 P12 7 Paa 7 Pas — P3s 7 P3s
Machine 2 4 P17 = Ps = P10 7 P18 ™ P31 7 P2z 7 Pao 7 Pas
> P7 = Pra = P 2 P3 P30 > Pa1 P 2 Pss
Rolling
conveyor
LL L[ [ [ - storagerack-- | [ [ [ ] |
1/0 location
| | | | /I/ Picking aisle
--- Storage rack - - -
--- Storage rack - - -
( S/R machine )
Cross --- Storage rack - - -
warehouse
Buffer aisle --- Storage rack - - -

Picking aisle i

| | | | | | s Storage rack - - - | |

| | | | | | -+ Storage rack - - - | |

Entry ( S/R machine Y D
4

z LL L[ [ [ - soragerak.- | | [ [ ] ]L

. —=)

FIGURE 3: Layout of the warehouse system.

and swarm intelligence algorithms, for example, fireworks
algorithm (FWA) [38, 39], brain storm optimization (BSO)
algorithm [40, 41], teaching-learning based optimization
(TLBO) algorithm [42-44], and Jaya optimization algorithm
[45]. Second, in this paper, we do not consider the communi-
cation between subpopulations. Undoubtedly, the interaction
of subpopulations is important to enhance optimization per-
formance by information share between subpopulations. So
how to implement the adaptive interaction of subpopulations
is additional direction for future study. Third, solving real-
world application problems is the perpetual goal for EAs, and
it would be fruitful to apply the proposed multipopulation
EAs to various complex real-world problems. There is no
doubt that more applications of the proposed multipopula-
tion EAs can emerge in the near future with focused research.
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